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In this paper we investigate the supersonic gas flows near the SXiS of 
Lava1 nozzles, which are described by linearized hyperbolic equations 
of the second order. 

An expression will be obtained for the determination of the form of 
the stream lines as a function of the distribution of Mach numbers along 
the axis of the nozzle. The effect of discontinuities in the initial 
values on the behavior of the stream lines will be investigated. 

These solutions do not apply in the region of transition through the 

velocity of sound. 

1. The equations of the characteristics of supersonic axially sym- 
metric irrotational flows (Fig. 1) in the characteristic coordinates 

(q, c) have the following form: 

where p is the Mach angle, M is the Mach 
number, v is the critical velocity and 8 
is the anile between the velocity vector 

The characteristic coordinates are expressed in terms of Cartesian 
coordinates by the following relationships: 
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To linearize the equations let it be assumed that the angles of in- 
clination of the stream lines are small 

e = 0 (1) (1.3) 

and in the equations we shall neglect small terms of higher order. This 
condition applies in a certain neighborhood of the axis of the nozzle. 

Equations (1.1) show that in any characteristic triangle, a - oe and 
0 are quantities of the same order of smallness (here oe is the value 
at a given point of the triangle). Hence it follows that within the 
linear approximation (3 = ae = const and p = ~(a) = const. 

In linearized form equations (1,l) become 

and the relationships between the coordinates are 

The characteristics of both families are straight lines having con- 
stant angles p and +_I with the x-axis. After elimination of CT from 
(1.4), we obtain the differential equation 
in Cartesian coordinates 

i!?+_E$-c$.!&o, 

To SOlW? equation (1.6) it is necessary 
The second initial condition, derived from 
is efx, 0) = 0. Usually in calculations of 
tion of M numbers (or o(M)) along the axis 
connection between (aO/a,ty=e and a(%. 0) 
equations (1.4). We have 

for the determination of 0 

that %/ay be given at y = 0. 
the condition of symmetry, 
Lava1 nozzles the distribu- 
of the nozzle is given. The 

may be obtained from any of 

2. Substitution of u = e/y leads to the Darboux equation 

To obtain solutions which are ~ontinuons at y = 0 it is necessary to 

(1.7) 
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assume, in order to account for the singularity in the second term 

(au I a?/),=e = 0 

This equation is one of the initial conditions. Therefore, only the 
second of the initial conditions may be chosen arbitrarily 

u (2, 0) = cp (2) or u b, 0) = w I ay),,=, (2.2) 

3. We shall first find the solution U of equation (2.1). satisfying 
the simple initial condition 

cp (2) = T (x, zo) = 1 I for s> %I 
0 for x <lo 

Equation (2.1) is homogeneous; therefore, we shall look for the solu- 
tion U as a function of z = (X - x0)/y. Substitution of this function 
into (2.1) leads to the ordinary differential equation 

(9 - 9) ddU / dza + zdU / dz = 0 (3.2) 

The boundary conditions for fJ have the form 

u 1 I for x - z, = cy or z = c 

= 0 for x- 2,~ 
(3.3) 

-cy or 2=--c 

and the solution is 

U=O forI<-c, U =:I for z>c 

4. This function may be used for the construction of a solution in 
terms of arbitrary, but continuous initial values of (p(x). 

The continuous function T(X) may be represented in the form 

T (4 = cp b - cy) + w dcp s dso z (5, 4 dxo (4.1) 

X-W 

because -r = 0 for x,, > x according to (3.1). An increase in the initial 
value 

leads to the increase in the function at the point (x, y) 

The full value of II, obviously, is represented by equation 
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x+CU 

u = ‘p b --cY) + \ gyJ(y)dx. 
r-cy 

(4.2) 

because u = 0 for x,, > x t CY. Hence, when integrating by parts and 

taking into account values of II on the characteristics (3.3). we obtain 

XSCY 
1 UZ- 
Y s 

dU 
cp (20) - dxo 

dz 
x--cy 

It may be shown that equation (4.3) applies to all instances where 

the distribution of M numbers along the nozzle axis is continuous, i.e. 

to flows without strong discontinuities. Note that at points where the 

function 6(x) and its derivative dq/dx have discontinuities condition 

&/ay = 0 for y - 0 is not satisfied. 

5. Returning to the function 0 = uy. we obtain as a solution of equa- 

tion (1.6) 

%+CU 

6= s cp (4 $ dxo (5.1) 

2-W 

Consider the function 8 for which 

Let us assume the function T(X) at the point x = 0 to have a discon- 

tinuity of order n. 

(5.2) 

According to (5.1) the expression for 8 in the region between charac- 

teristics x = f cy has the form 

x+ev 

0 = 
s 

axon ‘; dx, 

0 
(5.3) 

As a consequence of linearizing (1.3) the stream lines correspond to 

y = const; therefore relation (5.3) at y = y,, represents the variation 

of the angle 6 along a stream line y = yu. 

Let us introduce the new variable 

x=x+cy (5.4) 

This substitution is equivalent to translation of the origin of the 

x coordinate to the point of intersection of the characteristic x = -cy 

and the line y = ye. 
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The expansion of dU/dz into a series in terms of (X - xe)/yu has the 

form 

dU 2 -=- 
dz xc 

Jrgyz++. . ..k(A~--o)k+. . .] 
YOk 

(5.5) 

Let us also expand 0 into a series in terms of X/y, 

For n > - 1 all the coefficients C. have meaning. When integrating 1 
with respect to X we obtain an expansion of the equation of the stream 

1 ines 

&p+2.5 co -+. . 
n + 2.5 

. + QXk 
(n + k + 2.5) yak 

+. . . (5.7) 

Relation (5.7) shows that for a discontinuity in the initial function 

q(x) of order n, a discontinuity of order n + 2.5 in the stream line 

propagates along the characteristic x = -cy. When strong discontinuities 

are absent on the x-axis the order of the discontinuity in the stream 

line is greater than 1.5. To investigate the behavior of 8 in front of 

the reflected characteristic x = CY we introduce the change of variables 

x1= cyo- x9 Xl = x0 + Xl (5.8) 

Expansion of dU/dz into a series in terms of x1/y,, has the form 

~=-&f$~~(if.. . +ak$+...) (5.9) 

The expression for 8 is transformed in the following manner: 

Let N be a positive integer or zero. Then (5.10) may be represented 

as follows: 

for n #- 0.5 + fV 

YOk > 
n+1.5 

e=ylP+l /lo+. . . + A,%+. . . +x’ ( Yo”.5 ( Bo_t... +l?,X1L+. . . 
Y$ > (5.11) 
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for n = 0.5 + N (5.12) 

CO+. ..+&+... 

YOk 
4+.;.+o,X’k+... 

Yak 

When differentiating the latter relation we see that the curvature 
of the stream lines k = %/a~ for n = - 0.5 on the reflected character- 
istic has a logarithmic singularity. An analogous result was obtained 
in [31 for the derivatives of the velocity for this particular case. 
Behind the reflected characteristic x = cy we have for 8 

where 

This expression transforms into a polynomial of order n. when n is a 
real number or zero, otherwise it has the form analogous to (5.11) or 
(5.12). 

With the help of farmulas (5.3) and (5.1) and also by means of inte- 
grating and differentiating them we obtain the following relations for 
the angle 6. the displacement of the stream line y - ye and for the 
curvature .of the stream line k which are valid in the entire region: 

0 = Yo n+lF1 (f) , Y - yo = YO”+~ Fa (f ) , k = y,nF, (;) (5.15) 

6. As an example of the application of equation (5.1) let us Calcu- 
late the shape of the Lava1 nozzle, which transforms a radial flow into 

parallel flow. 

The distance from the “source. to the point on the x-axis of transl- 
tion from radial to parallel flow shall be denoted by R and the outlet 
radius of the nozzle by r. Obviously, r/R = 6, is the angle of the wall 

of the nozzle in the radial region. Let us locate the origin of the x- 

axis at the point of contact of the two regions. Obviously 

cp (4 = { I/ (R + 4 for 2<0 
o for z>O 

The quantity l/(R + x0) may be represented as follows: 



Since y/(R 
pansion needs 
8 

0 
P 
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= x) = Q(8) only the first term I/(R + x) in this ex- 
to be retained. Using (5.1) we obtain the expression for 

6E: 5 -dUdx 1 
R +x0 dz 

-w 

To calculate the equation of the stream line y = r approximately 
equation must be integrated with y = r. Here we can assume 

That equation has the form 

(6.2) 

this 

T. When eliminating the function 8 from equation (1.4) by using the 
coordinates x and y, we obtain 

From the initial conditions 

the solution of equation (7.1) has the form 

(7-i) 

(7.2) 

(7.3) 

8. For COmpariSOn with the relationships obtained above we gfVe 
(without derivation) some results for the case of plane flow. equations 
for 8 and 0 have the form 

(8.1) 

snd the solution (D’A1embert.s~ of these equations is 

q (x) = (3 (05 oh e (2, 01 = 0, (aa / dy)- = 0 

When the values of Q are continuous on the axis, which is the case 
in the absence of strong discontinuities on the axis, the stream lines 
have discontinuities of an order higher than the first, i.e. they do 
not have corner points. 
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The order of the discontinuities of stream lines, propagating along 
the characteristics is greater by two than the order of the discontinu- 
ities of q(x). In particular, in the case of the simplest initial con- 
ditions (3.1) the stream lines in the region -cy dx - x0 <cy represent 
the chords of curved segments, which become tangent lines on the charac- 
teristics r - x0 = f cy. 
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